Scientific Measurements Notes

I. Metric (SI) Measurements

- A. The goal was a uniform world-wide system of measurements
- B. It was decimal-based to make for easy conversions.

C. Metric Base Units

- <u>Time</u> second (s)

 a. Was 1/86,400 of an average length of a solar day
 b. Now frequency of radiation from a cesium-133 atom.
- 2. <u>Length</u> meter (m)
 - a) Was one ten-millionth of the distance from the equator to the North Pole
 - b) Then, length of platinum-iridium bar in Paris
 - c) Now, the distance traveled by light in a vacuum in 1/299,792,458 of a second.
- 3. <u>Mass</u> kilogram (kg)
 - a) Mass of a platinum-iridium cylinder kept at a controlled temperature and humidity
- 4. <u>**Temperature</u>** kelvin (K) (or °C in the classroom)</u>
 - a) 0° C = freezing point of water, 100° C is boiling
 - b) 1°C equals 1/100 of the distance between the boiling and freezing points of H_2O
 - c) kelvin scale, 0 K = absolute zero (-273 °C),
 - d) temperature increase of 1 K = temperature increase of 1 $^{\circ}C$
- 5. <u>Amount of a substance</u> mole (mol)
- 6. Electric Current ampere (A)
- 7. Luminous Intensity candela (cd)
- B. **Derived units** units formed from a combination of base units
 - 1. Examples m/s speed

volume – ml or cm³

g/ml – density m^2 - area

II. Metric Prefixes

Prefix	Symbol	Scientific Notation
nano-	n	1 x 10 ⁻⁹
micro-	μ	1 x 10 ⁻⁶
milli-	m	1 x 10 ⁻³

centi-	c	0.01
deci-	d	0.1
none	g, l, m	
kilo-	k	$1 \ge 10^3$
mega-	М	1 x 10 ⁶
giga-	G	1 x 10 ⁹
tera-	Т	$1 \ge 10^{12}$

III. Making Measurements

A. Accuracy vs. Precision

- 1. <u>Accuracy</u> how close a measurement is to a known or accepted value
- 2. <u>**Precision**</u> how consistent repeated measurements are, or how exact our measurements are.
- B. <u>Uncertainty</u> all measurements have a degree of uncertainty.
 - 1. When reading a measurement, read it to the closest mark and estimate one more number.
- C. <u>**Parallax**</u> apparent change in position of an object when viewed from different angles. Car examples
 - 1. Measurements must be read directly in line with measuring device.
- D. <u>Significant digits</u> tell us how many digits should be in an answer so it is no more or less precise than our measurements.

- 1. Four 3 Rules for determining significant digits
 - a. Nonzero digits are always significant.
 - b. All <u>final</u> zeros used to the right of the decimal point are significant.
 - c. Zeros between two other significant digits are always significant.
- E. <u>Scientific Notation</u> always written with one number in the ones column times an exponent of 10.
 - 1. Used to write very large or very small numbers.
 - 2. Used to write numbers with the correct number of significant digits.