Biochemistry Notes

- I. <u>Inorganic Compounds</u> compounds that are not produced by living things.
 - A) Do not contain carbon. Relatively simple.
 - B) 3 important inorganic compounds and substances.

1. <u>Water</u> (H₂O) –

- a. <u>Solvent/Polarity</u>
 - "universal solvent"

Na⁺Cl⁻

-Water is a polar molecule.

- -this allows other chemicals
 - (solutes) to dissolve in water to make solutions and react with each other
- b. Chemicals that do not dissolve or larger particles can form colloids or suspensions.
- c. allows for movement of compounds in organisms
- d. <u>High heat capacity</u> it can absorb or release large amounts of heat without changing temperature.
- e. <u>Chemical reactivity</u> Water can split compounds apart (hydrolysis) or be used to hook compounds together (dehydration synthesis)
- f. <u>Cushioning</u> Cerebrospinal fluid, amniotic fluid
- Oxygen (O₂) Used by most living things to burn or oxidize food and get energy.
- 3. <u>Carbon dioxide</u> (CO₂) this gas is the source of all carbon found in living things.
 -only inorganic compound to contain C.

I.V. Acids/Bases

- A. <u>Acids</u> have a sour taste, (ex. Citric acid), attack metals
 1) releases H⁺ (hydrogen ions) in a water solution
 - 2) known as proton donors
- B. <u>Bases</u> have a bitter taste, feel slippery
 - 1) Release **OH**⁻ (**hydroxide** or **hydroxyl** ions) in a solution of water.
 - 2) known as proton acceptors
- C. Weak vs. Strong Acids/Bases
 - 1) strong acids/bases ionize completely in water
- 2) weak acid/base –don't ionize completely in water D. Diluted vs. Concentrated Acids/Bases
 - 1) <u>diluted acids/bases</u> have been "watered down"
 - 2) concentrated acids/bases high acid to H₂O ratio
- E. Measured on a pH scale, that goes from 0-14.

dilute strongdilute weakconcentrated weak1) pH refers to the concentration of H^+ ions.

10 times.

F. When an acid is added to a base, a **neutralization reaction** occurs.

 $\begin{array}{ccc} HCl + & NaOH \rightarrow & HOH + NaCl \\ Hydrochloric acid & sodium hydroxide & water & a salt \end{array}$

- G. **Buffers** are chemicals in the body that can absorb or give off H⁺ and OH⁻ to keep the pH from changing. NaCO₃ + H⁺ $\leftarrow \rightarrow$ NaHCO₃
- H. <u>Salts</u> formed in a neutralization reaction
 - 1) Salts disassociate in water to form ions
 - 2) Form <u>electrolytes</u>- ions that conduct electrical currents in solution.